A capacitor stores $60\,\mu C$ charge when connected across a battery. When the gap between the plates is filled with dielectric, a charge of $120\,\mu C$ flows through the battery. The dielectric constant of the dielectric inserted is
$1$
$2$
$3$
$4$
A parallel plate capacitor with air between the plates has a capacitance $C$. If the distance between the plates is doubled and the space between the plates is filled with a dielectric of dielectric constant $6$ , then the capacitance will become
A parallel plate capacitor is made of two square plates of side $a$, separated by a distance $d\,(d < < a)$. The lower triangular portion is filled with a dielectric of dielectric constant $K$, as shown in the figure. Capacitance of this capacitor is
A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.
Two thin dielectric slabs of dielectric constants $K_1$ and $K_2$ $(K_1 < K_2)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field $E$ between the plates with distance $d$ as measured from plate $P$ is correctly shown by
A capacitor is kept connected to the battery and a dielectric slab is inserted between the plates. During this process